xué

learning, knowledge; school

DEFINITIONS

  • learning, knowledge
  • school
  • to learn
  • to study
  • to imitate
  • science
  • -ology

STROKES

WORDS

中央财经大 zhōng yāng cái jīng dà xué Central University of Finance and Economics, Beijing
中央音乐院 zhōng yāng yīn yuè xué yuàn Central Conservatory of Music
中山大 zhōng shān dà xué Sun Yat-sen University (Guangzhou); Sun Yat-sen University (Kaohsiung); Sun Yat-sen University (Moscow), founded in 1925 as training ground for Chinese communists
中等专业校 zhōng děng zhuān yè xué xiào specialized middle school
中等师范校 zhōng děng shī fàn xué xiào secondary normal school (secondary school that trains kindergarten and elementary school teachers)
中等技术校 zhōng děng jì shù xué xiào technical middle school; polytechnic
中医 zhōng yī xué traditional Chinese medicine; TCM
主日 zhǔ rì xué Sunday School
九三社 jiǔ sān xué shè Jiusan Society, one of the eight political parties of the CCP
五七干部校 wǔ qī gàn bù xué xiào May 7 Cadre School (forcing educated people into re-education and peasant labor during Cultural Revolution); abbr. to 五七幹校|五七干校
交叉科 jiāo chā xué kē interdisciplinary; interdisciplinary subject (in science)
交换代数 jiāo huàn dài shù xué (math.) commutative algebra
交通大 jiāo tōng dà xué abbr. for 上海交通大學|上海交通大学 Shanghai Jiao Tong University, 西安交通大學|西安交通大学 Xia'an Jiaotong University, 國立交通大學|国立交通大学 National Chiao Tung University (Taiwan) etc
人口 rén kǒu xué demography
人口统计 rén kǒu tǒng jì xué population studies; population statistics
人文地理 rén wén dì lǐ xué human geography
人文 rén wén xué humanities
人文社会科 rén wén shè huì xué kē humanities and social sciences
人生短暂,术无涯 rén shēng duǎn zàn , xué shù wú yá Life is short, learning is limitless; Ars longa, vita brevis
人相 rén xiàng xué physiognomy (judgment of a person's fate, character etc, based on facial features)
人类家 rén lèi xué jiā anthropologist
人体工 rén tǐ gōng xué ergonomics
人体解剖 rén tǐ jiě pōu xué human anatomy
今文经 jīn wén jīng xué Former Han dynasty school of Confucian scholars
代数基本定理 dài shù xué jī běn dìng lǐ fundamental theorem of algebra (every polynomial has a complex root)